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Is there memory in solar activity?

R. Oliver and J. L. Ballester
Departament de Fı´sica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain

~Received 18 May 1998!

The Hurst effect is a presumed and unexpected behavior of geoastrophysical time series by which these time
series have persistence or ‘‘memory.’’ The application of Hurst analysis to monthly sunspot numbers
@B. B. Mandelbrot and J. R. Wallis, Water Resour. Res.5, 321 ~1969!# yielded a Hurst exponentH50.86
60.05, suggesting that solar activity shows persistence and that the underlying responsible mechanism can
guarantee a positive correlation of solar activity during long time lapses, raising, at the same time, the possi-
bility of the existence of long-term memory in solar activity. More recently, radiocarbon data have been used
for a similar study@A. Ruzmaikin, J. Feynmann, and P. Robinson, Sol. Phys.149, 395 ~1994!# resulting in a
constant valueH50.84 between 100 and 3000 years, which indicates persistence of solar activity in such time
scales. Furthermore, Mount Wilson rotation measurements have also been analyzed in the same way@R. W.
Komm, Sol. Phys.156, 17 ~1996!# and the results indicate that temporal variations of solar rotation on time
scales shorter than the 11-year cycle are caused by a stochastic process which is characterized by persistence.
Here, we have followed the scale of fluctuation approach to show that there is no incontrovertible evidence for
the presence of the Hurst effect in sunspot areas and, therefore, that there is no proof of the existence of
long-term memory in solar activity.@S1063-651X~98!02311-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

A time series can be characterized by means of the H
exponent (H) which reveals whether it shows persisten
(1.H.0.5), i.e., positive correlation between the pres
values and those in the distant past; antipersistence
.H.0), i.e., negative correlation; or comes from a rand
process (H50.5) for which the correlation is zero. Th
Hurst effect can be defined as an anomalous behavior o
rescaled adjusted range,Rn* , in a time series of record lengt
n. In natural phenomena time series, Hurst@1# found the
power relation

Rn* 5anH, ~1!

with a50.61 and a mean valueH50.72, and thus claimed
that natural time series show persistence. However, for in
pendent identically distributed processes~fully random pro-
cesses! the asymptotic value ofH is 0.5. This discrepancy
between the values ofH for fully random processes an
those obtained in geoastrophysical time series is known
the Hurst effect.

This result has been very much in debate since it is v
difficult to understand what sort of physical mechanism c
assure infinite memory, for instance, that the level of so
activity nowadays will be transmitted over decades and c
turies. Mandelbrot and Van Ness@2# pointed out thatH
Þ0.5 arises in a class of processes with infinite memory
they termed fractional Brownian noises~FBN’s!. A white
noise arises from a Bachelier-Wiener process~Brownian mo-
tion! and, in a similar way, a FBN arises from a process~the
fractional Brownian motion! in which each increment is a
weighted average of all the past increments of a Bache
Wiener process. Although FBN’s processes are operatio
they are not physically founded models and did not arise
the result of the analysis of physical or dynamic properties
PRE 581063-651X/98/58~5!/5650~5!/$15.00
st

t
.5

he

e-

as

y
n
r

n-

at

r-
al,
s
f

processes under study. Several hypotheses have been pu
ward in order to explain the Hurst effect:~a! The Hurst phe-
nomenon is not a real effect, but a transitory behavior~preas-
ymptotic behavior! produced by the slow convergence to
0.5 exponent. This means that finite time series without p
sistence may give Hurst exponents larger than 0.5@3#; ~b! the
Hurst phenomenon is due to nonstationarities in the unde
ing mean of the process@4#; ~c! the Hurst phenomenon is
real one due to stationary processes with very large mem
i.e., there are processes in nature having infinite memory

Solar activity is produced by the emergence of magne
flux through the photosphere, forming active regions wh
include sunspots. However, although the behavior of
most characteristic feature of solar activity, namely the 1
year sunspot cycle, is sufficiently well known, the behav
of the nonperiodic component of solar activity is not so w
understood. The question arises as to whether it can be c
acterized as a correlated process, in which persistenc
memory is present, or as an uncorrelated random proces
which solar activity at any time is independent of previo
history.

Mandelbrot and Wallis@5# used the Hurst analysis t
study the behavior of monthly sunspot numbers betw
1749 and 1948. Estimation of the Hurst exponent by me
of a pox diagram yielded the valueH50.8660.05, which
suggests that solar activity presents long-term persiste
Recently, radiocarbon data have been used for a sim
study@6# resulting in a constant valueH50.84 between 100
and 3000 years, which indicates persistence of solar acti
in such time scales. Also, Hurst analysis of Mount Wils
rotation measurements@7# seems to indicate that tempor
variations of solar rotation on time scales shorter than
11-year cycle are caused by a stochastic process whic
characterized by persistence.

Here, we have tried to assess the presence of the H
effect in solar activity using a different procedure, called t
5650 © 1998 The American Physical Society
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PRE 58 5651IS THERE MEMORY IN SOLAR ACTIVITY?
scale of fluctuation approach, which has been applied
very representative feature of solar activity such as sun
areas, which provide us with an indication of the amount
magnetic flux emerging through the photosphere.

II. DATA AND METHODS

In this study, we have used daily sunspot areas betw
1874 and 1993 grouped in four-week bins, which yields
time series with 1555 data values. Before performing
Hurst analysis, we have carried out a Cox-Stuart test, wh
statistic indicates that the mean of the time series is not
tionary. Then, to ensure the stationarity of the mean, we h
fitted and subtracted from the time series a sinusoidal fu
tion with a period equal to that of the solar cycle, to remo
the deterministic cycle, and a second-order polynomial
remove the underlying long-term trend. A new application
the Cox-Stuart test reveals that, after the above proces
detrending, the mean is now stationary.

The ‘‘rescaled range’’ analysis~or Rn* analysis! was de-
veloped to study the problem of water storage and was
scribed in detail by@8#. This statistical method was also use
by @5# to study the long-run properties of various geophysi
records, including sunspot numbers, and has been revie
by @9#. Here, we follow them in our application of th
method and refer to these works for a complete descrip
of the analysis procedure.

Let xi , i 51,2,...,N, be an observed data series who
Hurst exponent is to be computed. In the hydrological c
text the xi may be the annual water input into a dam
reservoir duringN consecutive years. Let us now restri
ourselves to ann-year period starting at yeart011, that is,
let us consider the data setxi , i 5t011,t012,...,t01n,
where 0<t0<N2n. We denote the average of this subs
~i.e., the average water inflow into the reservoir over
n-year period! as x̄(t0 ,n),

x̄~ t0 ,n!5
1

n (
i 5t011

t01n

xi . ~2!

In an ideal reservoir, designed so as to never overflow
empty, x̄(t0 ,n) also represents the optimum annual wa
release. In Eq.~2! and in what follows,t0 andn in brackets
are used to indicate a dependence on these two parame

Furthermore, the standard deviation of thexi during the
same period is estimated with the formula

S~ t0 ,n!5H 1

n21 (
i 5t011

t01n

@xi2 x̄~ t0 ,n!#2J 1/2

. ~3!

This definition of the standard deviation~with the factorn
21 in the denominator instead ofn) is usually considered so
as to make it anunbiasedestimator of the actual standar
deviation of the time series@10#.

Next, a new variableyt , t51,2,...,n, is defined as fol-
lows:

yt~ t0 ,n!5 (
i 5t011

t01t

@xi2 x̄~ t0 ,n!#. ~4!
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In this equation the differencexi2 x̄(t0 ,n) is the departure
from the meanof the influx in thei th year. Hence, a year in
which the reservoir receives less water than is released yi
a negative value of this quantity~the opposite happens whe
the water influx lies above then-year average!. The summa-
tion in Eq. ~4! gives theaccumulated departurefrom the
mean~i.e., the net gain or loss of stored water! during the
first t years of the period considered. The dimensions of
reservoir depend on the fluctuations in the accumulated
parture and should be such that the reservoir never emp
nor overflows. The storage capacity required to maintain
mean discharge over then-year period is called therange
~represented byR) and is equal to the difference between t
maximum and the minimum accumulated departure over
n years. The range is defined by the formula

R~ t0 ,n!5 max
1<t<n

yt~ t0 ,n!2 min
1<t<n

yt~ t0 ,n!. ~5!

The range so defined will take values on very differe
scales when different phenomena are studied. Therefore,
convenient to substitute it by therescaled range, equal to the
range divided by the sample standard deviation,

R* ~ t0 ,n!5
R~ t0 ,n!

S~ t0 ,n!
. ~6!

Now one can consider the dependence of the resc
range on the time lagn. However, there still remains on
arbitrary parameter,t0 , which should be eliminated. To thi
end the valuest050,n,2n,... areselected so that the entir
data set is divided into as many nonoverlappingn-year peri-
ods as can be constructed. For each of these subset
rescaled rangeR* (t0 ,n) is computed as outlined above an
the rescaled range,Rn* , for the time lagn is finally defined
as the average of those values,

Rn* 5
1

nt0
(
t0

R* ~ t0 ,n!, ~7!

wherent0
is the integer part ofN/n and is the number of

values fort0 used.
To determine the value ofH for a time series, the rescale

rangeRn* is computed and the results are presented in a ‘‘p
diagram’’ ~in which the logarithm of the rescaled range
plotted versus the logarithm of the time lag!. The Hurst ex-
ponent is then given by the slope of a straight line fitted
the points in the pox diagram. However, not all points in t
diagram should be given the same weight@5#. When the lag
n is small compared to the length of the time series, a la
number of independent estimations ofRn* can be calculated
They have a considerable scatter so that their average c
be meaningless. On the other hand, the opposite happen
values ofn close to the total number of data: their avera
has little statistical significance because only one or a
estimations ofRn* are available. Then, very small or ver
large values of the lagn must not be considered in the de
termination of the Hurst exponent.

A more precise definition of the Hurst effect was intr
duced by@11#, which stated that a sequence of random va
ables exhibits the Hurst effect withH.0.5 if n20.5Rn* con-
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verges in distribution, asn goes to infinity, to a nonzero
random variable. This is in contrast with the functional ce
tral limit theorem @12,13#, which states that, for processe
belonging to the Brownian domain of attraction, the expec
value and variance are@14#

m̂5E~n20.5Rn* !5~up/2!0.5, ~8!

ŝ25var~n20.5Rn* !5u~p2/62p/2!, ~9!

respectively,u being the scale of fluctuation, or correlatio
length scale, which was first proposed by@15#. Then, con-
vergence of sample values ofn20.5Rn* into the asymptotic

interval given bym̂62ŝ allows us to accept the hypothes
of nonexistence of the Hurst effect in a time series. Suc
test can be improved if an independent estimate of the l
of the sequencen20.5Rn* is known, so the only extra param
eter needed is the scale of fluctuation. The scale of fluc
tion of a stationary random series can be defined as

u5 lim
n→`

ng~n!, ~10!

n being the time lag andg(n) the variance function. There
are several methods to estimate the scale of fluctuation f
a record of finite lengthx(t), with 0<t<T0 , which is a
representation of a stationary random processX(t). Among
them, and for the sake of simplicity, the approach cho
here has been to obtain consistent estimators ofu by using
the variance functiong(n) @16#. The usual definition of the
variance function for the aboveX(t) is

g~n!5
sn

2

s2 ,

which measures the reduction of the point variances2 under
local averaging. However, given the correlation functio
r~t!, the variance function for a random series can be
tained as follows:

g~n!5
1

n
1

2

n (
t51

n S 12
t

nD r~t!. ~11!

Now, to obtainu it is necessary to adopt an approxima
model for the variance function. For wide-band proces
such as the present one, there is a family of analytical mo
for the variance function described as@16#

g~n!5F11S n

u D mG21/m

. ~12!

Vanmarcke@16# discussed the values ofm which can be
used in Eq.~12!, pointing out that anym.0 is acceptable. In
our case, varyingm yields similar results for the behavior o
the estimated scale of fluctuation, som51 has been chosen
i.e.,

g~n!5
u

u1n
. ~13!
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However, the variance function estimator is biased and
need an unbiased estimator to estimateu. Then, following
Vanmarcke@16#, a corrected estimate of the variance fun
tion, ĝc , is given by

ĝc~n!5g~T0!1ĝ~n!@12g~T0!#, ~14!

T0 being the time series length andĝ(n) the estimated vari-
ance function. Now, we can use Eq.~13! to express both
g(T0) and ĝc(n) in terms of û, which can then be substi
tuted in Eq.~14! to obtain the following explicit solution for
the estimated scale of fluctuation:

û5
ĝ~n!T0n

T0@12ĝ~n!#2n
. ~15!

In fact, the estimation ofû is by itself a test of the existenc
of the Hurst effect for stationary processes. Due to the fu
tional central limit theorem, ifû is finite the exponent isH
50.5 and there is no Hurst effect. On the contrary, whenû is
infinite there is a Hurst effect.

In the case of fully random data, for whichr(t)50 when
t.0, from Eqs.~11! and ~12! we obtain

g~n!5
1

n
~16!

and

û5
n

n21
, ~17!

which gives û51 for n→`. In addition, the pox diagram
yields the value 0.5 for the Hurst exponent.

Then, the procedure to follow in order to obtain the val
of û is to calculate the correlation functionr~t! from the
detrended time series, then use Eq.~11! to getg(n), and take
this value asĝ(n) in Eq. ~15! to computeû. Onceû has been
obtained, the intervalm̂62ŝ, to whichn20.5Rn* should con-

FIG. 1. Pox diagram for sunspot areas~s! and Gaussian random
data~h!. The Hurst exponent for sunspot areas is 0.883 while
Gaussian random data it is 0.578.Rn* andn are given in units of 28
days.
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PRE 58 5653IS THERE MEMORY IN SOLAR ACTIVITY?
verge, must be determined. The reality of this converge
limit can be checked by plottingn20.5Rn* versusn ~called the
GEOS, geophysical record, diagram in@17#!.

III. RESULTS AND CONCLUSIONS

Figure 1 shows the pox diagram for both Gaussian r
dom data and solar activity data. While for random data
yields the valueH50.578, close to 0.5 as expected, for su
spot areas the value ofH is 0.883, similar to the one obtaine
by @5#, which would erroneously indicate the presence of
Hurst effect. Figure 2 displays a plot of the estimated scal
fluctuation versus time lag for sunspot areas and Gaus
random data, from which the value ofû for both data sets
can be estimated. For sunspot areas,û stabilizes around 25
so that the convergence interval ofn20.5Rn* is 6.2662.72,

while for Gaussian random dataû tends to 0.8~fully random
data have û51) and the convergence interval is 1.1
60.49. The stabilization ofû around a finite value would
indicate that there is no memory in these time series.

To check this conclusion, we have plotted the GEOS d
gram for the same data sets~Fig. 3!, showing an apparen
convergence ofn20.5Rn* within the intervals determined
above. However, the limited length of the sunspot data se
does not allow us to discard the possibility of the existen
of the Hurst effect in the data. A much longer data set co

FIG. 2. The scale of fluctuation (û) versus time lag (n) for
sunspot areas~solid! and Gaussian random data~dashed!. Conver-

gence ofû towards the values 25~sunspot areas! and 0.8~Gaussian
random data! can be observed. The length of both data serie

T051555. n and û are given in units of 28 days.
,
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help determine whether the circles in Fig. 3 converge into
asymptotic interval~i.e., there is no Hurst effect! or else
diverge asn→` ~i.e., the data show the Hurst effect!.

In summary, we have used the scale of fluctuation
proach to investigate the presence of long-term memory
sunspot areas time series, finding that the estimated sca
fluctuation converges to a finite value which would me
that the time series satisfies the functional central limit th
rem ~convergence within an interval!, in contrast with what
should be expected for processes with infinite memory~di-
vergence! for which the scale of fluctuation increases in
continuous way. Since our sample record has a station
mean, the discrepancy with the pox diagram valueH'0.9
obtained from the same data could be understood in term
a slow convergence toH50.5 ~preasymptotic behavior!, due
to an insufficient length of the record.

We can conclude that there is no incontrovertible e
dence for the presence of the Hurst effect in the nonperio
component of sunspot areas time series. This would m
that, contrary to earlier published research works, it is
possible to make any strong statement about the presen
not of temporal memory in such time series and that, for t
reason, one cannot assure whether or not the present
activity level will influence solar activity in the distant fu
ture. The present analysis can be extended to other a
physical time series, in order to assess the reality of the H
effect in astrophysical phenomena.

is

FIG. 3. GEOS diagram for sunspot areas~s! and Gaussian ran

dom data~h!. Asymptotic convergence into the intervalm̂62ŝ
~indicated by two solid lines for the sunspot data and two das
lines for the Gaussian random data! points out that the presence o
the Hurst effect in sunspot areas is doubtful.Rn* andn are given in
units of 28 days.
pl.
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