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Is there memory in solar activity?
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The Hurst effect is a presumed and unexpected behavior of geoastrophysical time series by which these time
series have persistence or “memory.” The application of Hurst analysis to monthly sunspot numbers
[B. B. Mandelbrot and J. R. Wallis, Water Resour. Rgs321 (1969] yielded a Hurst exponerii =0.86
+0.05, suggesting that solar activity shows persistence and that the underlying responsible mechanism can
guarantee a positive correlation of solar activity during long time lapses, raising, at the same time, the possi-
bility of the existence of long-term memory in solar activity. More recently, radiocarbon data have been used
for a similar study{A. Ruzmaikin, J. Feynmann, and P. Robinson, Sol. P8, 395(1994] resulting in a
constant valuéd = 0.84 between 100 and 3000 years, which indicates persistence of solar activity in such time
scales. Furthermore, Mount Wilson rotation measurements have also been analyzed in the saReWay
Komm, Sol. Phys156, 17 (1996] and the results indicate that temporal variations of solar rotation on time
scales shorter than the 11-year cycle are caused by a stochastic process which is characterized by persistence.
Here, we have followed the scale of fluctuation approach to show that there is no incontrovertible evidence for
the presence of the Hurst effect in sunspot areas and, therefore, that there is no proof of the existence of
long-term memory in solar activitf S1063-651X98)02311-3

PACS numbd(s): 05.45+b

[. INTRODUCTION processes under study. Several hypotheses have been put for-
ward in order to explain the Hurst effe¢s) The Hurst phe-

A time series can be characterized by means of the Hurgiomenon is not a real effect, but a transitory behatpoeas-
exponent H) which reveals whether it shows persistenceymptotic behavior produced by the slow convergence to a
(1>H>0.5), i.e., positive correlation between the present0.5 exponent. This means that finite time series without per-
values and those in the distant past; antipersistence (Odistence may give Hurst exponents larger thari 8]5(b) the
>H>0), i.e., negative correlation; or comes from a randomHurst phenomenon is due to nonstationarities in the underly-
process KH=0.5) for which the correlation is zero. The ing mean of the proceg4]; (c) the Hurst phenomenon is a
Hurst effect can be defined as an anomalous behavior of theeal one due to stationary processes with very large memory,
rescaled adjusted rang®; , in a time series of record length i.e., there are processes in nature having infinite memory.

n. In natural phenomena time series, Hurét found the Solar activity is produced by the emergence of magnetic
power relation flux through the photosphere, forming active regions which
include sunspots. However, although the behavior of the

R¥=an", (1) most characteristic feature of solar activity, namely the 11-

year sunspot cycle, is sufficiently well known, the behavior

with a=0.61 and a mean valud =0.72, and thus claimed of the nonperiodic component of solar activity is not so well
that natural time series show persistence. However, for indainderstood. The question arises as to whether it can be char-
pendent identically distributed procesgédly random pro- acterized as a correlated process, in which persistence or
cessesthe asymptotic value off is 0.5. This discrepancy memory is present, or as an uncorrelated random process, in
between the values dfl for fully random processes and which solar activity at any time is independent of previous
those obtained in geoastrophysical time series is known asistory.
the Hurst effect. Mandelbrot and Wallig5] used the Hurst analysis to

This result has been very much in debate since it is vergtudy the behavior of monthly sunspot numbers between
difficult to understand what sort of physical mechanism canl749 and 1948. Estimation of the Hurst exponent by means
assure infinite memory, for instance, that the level of solaof a pox diagram yielded the valud=0.86+0.05, which
activity nowadays will be transmitted over decades and censuggests that solar activity presents long-term persistence.
turies. Mandelbrot and Van Neg&] pointed out thatH Recently, radiocarbon data have been used for a similar
#0.5 arises in a class of processes with infinite memory thastudy[6] resulting in a constant valud=0.84 between 100
they termed fractional Brownian nois€EBN’s). A white  and 3000 years, which indicates persistence of solar activity
noise arises from a Bachelier-Wiener procé&®wnian mo-  in such time scales. Also, Hurst analysis of Mount Wilson
tion) and, in a similar way, a FBN arises from a procésge  rotation measuremen{¥] seems to indicate that temporal
fractional Brownian motionin which each increment is a variations of solar rotation on time scales shorter than the
weighted average of all the past increments of a Bacheliert1-year cycle are caused by a stochastic process which is
Wiener process. Although FBN’s processes are operationatharacterized by persistence.
they are not physically founded models and did not arise as Here, we have tried to assess the presence of the Hurst
the result of the analysis of physical or dynamic properties oeffect in solar activity using a different procedure, called the
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scale of fluctuation approach, which has been applied to g this equation the difference —x(to,n) is the departure
very representative feature of solar activity such as sunspgtom the mearof the influx in theith year. Hence, a year in
areas, which provide us with an indication of the amount ofhich the reservoir receives less water than is released yields

magnetic flux emerging through the photosphere. a negative value of this quantitthe opposite happens when
the water influx lies above the-year average The summa-
Il. DATA AND METHODS tion in Eq. (4) gives theaccumulated departurérom the

) ) mean(i.e., the net gain or loss of stored wateluring the
In this study, we have used daily sunspot areas betweefys; t years of the period considered. The dimensions of the

1_874 anpl 199_3 grouped in four-week bins, which y_lelds Feservoir depend on the fluctuations in the accumulated de-
time series with 1555 data values. Before performing thé,,yyre and should be such that the reservoir never empties
Hurst analysis, we have carried out a Cox-Stuart test, Whosg,, overflows. The storage capacity required to maintain the
statistic indicates that the mean of the time series is not sta; o4 discharge over theyear period is called theange
tionary. Then, to ensure the stationarity of the mean, we havf?epresented bR) and is equal to the difference between the

fitted and subtracted from the time series a sinusoidal funcr‘naximum and the minimum accumulated departure over the
tion with a period equal to that of the solar cycle, to remove,, years. The range is defined by the formula

the deterministic cycle, and a second-order polynomial, to

remove the underlying long-term trend. A new application of R(tg,n)= max y;(to,n)— min y,(ty,n). (5)
the Cox-Stuart test reveals that, after the above process of 1<t=n 1stsn
detrending, the mean is now stationary. ) . .
The “rescaled range” analysi@r R* analysis was de- The range so defined will take values on very different
n

veloped to study the problem of water storage and was decales when different phenomena are studied. Therefore, it is
scribed in detail by8]. This statistical method was also used COnvenient to substitute it by thescaled rangeequal to the

by [5] to study the long-run properties of various geophysicaf@n9€ divided by the sample standard deviation,

records, including sunspot numbers, and has been reviewed

by [9]. Here, we follow them in our application of the R*(tg,n)= R(to,n). (6)
method and refer to these works for a complete description S(to,n)
of the analysis procedure.

Now one can consider the dependence of the rescaled

Letx;, i=1,2,..,N, be an observed data series Whoseran e on the time lag. However, there still remains one
Hurst exponent is to be computed. In the hydrological con- 9 9. ’

text the x, may be the annual water input into a dam Orarbltrary parametet,, which should be eliminated. To this

reservoir duringN consecutive years. Let us now restrict 32?;2:,{ \i/salduisli%l)e:doi,r?tfgé.r.ngaesr?:)encésgrgo thatetg:e eerr1it_|re
ourselves to am-year period starting at yeap+ 1, that is, y PRmgear p

let us consider the data set, i=tot Lig+2,... ot N, ods as can be constructed. For each of these subsets the

" ! ,
where O<t,<N—n. We denote the average of this Subsetrescaled rang®&* (ty,n) is computed as outlined above and

X : o .
(i.e., the average water inflow into the reservoir over thethe rescaled rang®, , for the time lagn is finally defined

. — as the average of those values,
n-year periogl asx(tq,n),

1
_ 1o Rh =2 R*(to.n), v
X(tg,n)= - HEH X; . (2 to to
-0

where Ny, is the integer part oN/n and is the number of
In an ideal reservoir, designed so as to never overflow noya|yes fort, used.

empty, x(tg,n) also represents the optimum annual water To determine the value ¢ for a time series, the rescaled
release. In Eq(2) and in what followst, andn in brackets rangeR} is computed and the results are presented in a “pox
are used to indicate a dependence on these two parametersiagram” (in which the logarithm of the rescaled range is
Furthermore, the standard deviation of theduring the  plotted versus the logarithm of the time Jaghe Hurst ex-
same period is estimated with the formula ponent is then given by the slope of a straight line fitted to
the points in the pox diagram. However, not all points in the
to* N _ diagram should be given the same weiffit When the lag
S(to,n) =\ o7 ,ﬂEﬂ [Xi—x(to,M 1% . (3 nis small compared to the length of the time series, a large
o number of independent estimationsRjf can be calculated.
They have a considerable scatter so that their average could
be meaningless. On the other hand, the opposite happens for
values ofn close to the total number of data: their average
has little statistical significance because only one or a few
estimations ofR: are available. Then, very small or very
large values of the lag must not be considered in the de-

12

This definition of the standard deviatidwith the factorn
—1 in the denominator instead oj is usually considered so
as to make it arunbiasedestimator of the actual standard
deviation of the time serigd0].

Next, a new variabley;, t=1,2,..,n, is defined as fol-

lows:
termination of the Hurst exponent.
to+t A more precise definition of the Hurst effect was intro-
Vilto, )= > [X—X(to,n)]. (4)  duced by{11], which stated that a sequence of random vari-
[

to+1 ables exhibits the Hurst effect witH>0.5 if n~%*R* con-
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verges in distribution, am goes to infinity, to a nonzero However, the variance function estimator is biased and we
random variable. This is in contrast with the functional cen-need an unbiased estimator to estiméterhen, following
tral limit theorem[12,13], which states that, for processes Vanmarcke[16], a corrected estimate of the variance func-
belonging to the Brownian domain of attraction, the expectedion, v, , is given by
value and variance afd4]
. Ye(M=9(To)+ ¥M[1-¥(To)], (14
p=E(n"OR%)=(6m/2)°F, ® ‘ ° °
~ T, being the time series length aﬁ&ﬂn) the estimated vari-
o?=var(n”%R%)= 0(m?/6— /2), (9)  ance function. Now, we can use E(.3) to express both
_ . _ ~ y(T,) and y(n) in terms of &, which can then be substi-
respectively,f being the scale of fluctuation, or correlation yieq in Eq.(14) to obtain the following explicit solution for
length scale, which was first proposed [#6]. Then, con-  ihe estimated scale of fluctuation:
vergence of sample values aof ®*R* into the asymptotic
interval given by,&tZ(} allows us to accept the hypothesis
of nonexistence of the Hurst effect in a time series. Such a =
test can be improved if an independent estimate of the limit To[1=y(n)]—n
of the sequenca™°°R} is known, so the only extra param- S _ _
eter needed is the scale of fluctuation. The scale of fluctuadh fact, the estimation ob is by itself a test of the existence

-~ y(N)Ton (15

tion of a Sta‘[ionary random series can be defined as of the Hurst effect for Stationary processes. Due to the func-
tional central limit theorem, i is finite the exponent i#i
6=lim ny(n), (10 =0.5 and there is no Hurst effect. On the contrary, whés

n—oo

infinite there is a Hurst effect.

. . . . In th f full fi hi = h
n being the time lag ang(n) the variance function. There T>8 tfrir%aéeso(lllj) érr%rztig)mwdeaga;tgrrlw igi{7) =0 when
are several methods to estimate the scale of fluctuation from™ ' as-

a record of finite lengthx(t), with O<t<T,, which is a 1

representation of a stationary random proc€éy. Among y(n)== (16)
them, and for the sake of simplicity, the approach chosen n

here has been to obtain consistent estimatorg by using

the variance functiory(n) [16]. The usual definition of the and

variance function for the abow¥(t) is

2 o= —— (17
Un
v(n)=—3,
which gives@=l for n—o. In addition, the pox diagram
which measures the reduction of the point varianéaunder  yields the value 0.5 for the Hurst exponent.

local averaging. However, given the correlation function, Then, the procedure to follow in order to obtain the value
p(7), the variance function for a random series can be obef ¢ is to calculate the correlation functign(n) from the

tained as follows: detrended time series, then use Bld) to gety(n), and take
this value asy(n) in Eq. (15) to computed. Onced has been

1 2 T ; ; 0 - ; -0.50%
-4 _ obtained, the intervak = 20, to whichn™"~R¢ should con-

() n+n;l(1 n)pu). (1 "

Now, to obtaind it is necessary to adopt an approximate
model for the variance function. For wide-band processes
such as the present one, there is a family of analytical models
for the variance function described H®)]

m]—1/m

n

+
1 0

y(n)= 12

Vanmarcke[16] discussed the values @fi which can be
used in Eq(12), pointing out that anyn>0 is acceptable. In
our case, varyingn yields similar results for the behavior of
the estimated scale of fluctuation, s6=1 has been chosen,
ie.,

1.0 1.5 20 25 3.0
log,, m

FIG. 1. Pox diagram for sunspot ard&%) and Gaussian random
data(C). The Hurst exponent for sunspot areas is 0.883 while for
__ ¢ Gaussian random data it is 0.5F&; andn are given in units of 28
y(n)= : (13
6+n days.
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FIG. 2. The scale of fluctuationdj versus time lag 1) for FIG. 3. GEOS diagram for sunspot ar;(éE) and .GaussAian ran-
sunspot areagsolid) and Gaussian random dadasheil Conver- dom data((]). Asymptotic convergence into the interval=2c¢

gence ofd towards the values 2Gunspot areasand 0.8(Gaussian (.indicated by two slolid lines for the .sunspot data and two dashed
random datpcan be observed. The length of both data series iélnes for the Gaussian random dafnints out that the presence of

_ - . . . the Hurst effect in sunspot areas is doubtff]. andn are given in
To=1555.n and ¢ are given in units of 28 days. units of 28 days.

verge, must be determined. The reality of this convergencgelp determine whether the circles in Fig. 3 converge into the
limit can be checked by plotting~%*R* versusn (called the  asymptotic interval(i.e., there is no Hurst effector else

GEOS, geophysical record, diagram[iv]). diverge am—x (i.e., the data show the Hurst effict
In summary, we have used the scale of fluctuation ap-
. RESULTS AND CONCLUSIONS proach to investigate the presence of long-term memory in

sunspot areas time series, finding that the estimated scale of

Figure 1 shows the pox diagram for both Gaussian ranfjyctuation converges to a finite value which would mean
dom data and solar activity data. While for random data itthat the time series satisfies the functional central limit theo-
yields the valued =0.578, close to 0.5 as expected, for sun-rem (convergence within an intervalin contrast with what
spot areas the value bf is 0.883, similar to the one obtained should be expected for processes with infinite memoliy
by [5], which would erroneously indicate the presence of the,ergence for which the scale of fluctuation increases in a
Hurst effect. Figure 2 displays a plot of the estimated scale oontinuous way. Since our sample record has a stationary
fluctuation versus time lag for sunspot areas and Gaussigfean, the discrepancy with the pox diagram vatire 0.9
random data, from which the value éffor both data sets obtained from the same data could be understood in terms of

can be estimated. For sunspot argastabilizes around 25, a slow convergence td=0.5 (preasymptotic behaviprdue
so that the convergence interval of %°R* is 6.26+2.72, !0 an insufficient length of the record.

: . - We can conclude that there is no incontrovertible evi-
while for Gaussian random datatends to 0.§fully random ) U
dence for the presence of the Hurst effect in the nonperiodic

data havef=1) and the convergence interval is 1.12 component of sunspot areas time series. This would mean
*=0.49. The stabilization ob around a finite value would that, contrary to earlier published research works, it is not
indicate that there is no memory in these time series. possible to make any strong statement about the presence or

To check this conclusion, we have plotted the GEOS dianot of temporal memory in such time series and that, for this
gram for the same data sefSig. 3), showing an apparent reason, one cannot assure whether or not the present solar
convergence ofn~%°R* within the intervals determined activity level will influence solar activity in the distant fu-
above. However, the limited length of the sunspot data seriesire. The present analysis can be extended to other astro-
does not allow us to discard the possibility of the existencephysical time series, in order to assess the reality of the Hurst
of the Hurst effect in the data. A much longer data set couldeffect in astrophysical phenomena.
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